Using Cutwidth and Then Geomcol for Continuous
Abstract
We show that both Cutwidth and Imbalance are fixed-parameter tractable when parameterized by the twin-cover number of the input graph. We further show that Imbalance is NP-complete for split graphs and therefore chordal graphs, but linear-time solvable for proper interval graphs, which equals the complexity of Cutwidth on these classes.
Both results follow from a new structural theorem, that every instance of Cutwidth or Imbalance has an optimal ordering of a restricted form.
Keywords
- Imbalance
- Cutwidth
- Twin-cover
- Vertex layout
- Proper interval graph
- Split graph
Notes
- 1.
The statements marked with a * are proved in the full version of the paper.
References
-
Bakken, O.R.: Arrangement problems parameterized by neighbourhood diversity. Master's thesis, The University of Bergen (2018)
-
Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M.T., Wood, D.R.: Balanced vertex-orderings of graphs. Discrete Appl. Math. 148(1), 27–48 (2005)
-
Brandstadt, A., Spinrad, J.P., et al.: Graph Classes: A Survey, vol. 3. SIAM, Philadelphia (1999)
-
Charbit, P., Habib, M., Mouatadid, L., Naserasr, R.: A new graph parameter to measure linearity. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10628, pp. 154–168. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71147-8_11
-
Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Appl. Math. 138(3), 371–379 (2004)
-
Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discrete Math. 23(4), 1905–1953 (2009)
-
Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On cutwidth parameterized by vertex cover. Algorithmica 68(4), 940–953 (2014)
-
Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28
-
Gajarský, J., Lampis, M., Ordyniak, S.: Parameterized algorithms for modular-width. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 163–176. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03898-8_15
-
Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_21
-
Gaspers, S., Messinger, M.-E., Nowakowski, R.J., PraÅ‚at, P.: Clean the graph before you draw it!. Inf. Process. Lett. 109(10), 463–467 (2009)
-
Giannopoulou, A.C., Pilipczuk, M., Raymond, J.-F., Thilikos, D.M., Wrochna, M.: Cutwidth: obstructions and algorithmic aspects. arXiv preprint arXiv:1606.05975 (2016)
-
Heggernes, P., Lokshtanov, D., Mihai, R., Papadopoulos, C.: Cutwidth of split graphs, threshold graphs, and proper interval graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 218–229. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92248-3_20
-
Heggernes, P., van 't Hof, P., Lokshtanov, D., Nederlof, J.: Computing the cutwidth of bipartite permutation graphs in linear time. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 75–87. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16926-7_9
-
Jinjiang, Y., Liying, K.: One characterization of unit interval graphs and its applications. J. Shijiazhuang Railway Inst. 7(2), 50–54 (1994)
-
Jinjiang, Y., Sanming, Z.: Optimal labelling of unit interval graphs. Appl. Math. 10(3), 337–344 (1995)
-
Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996)
-
Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. Theoret. Comput. Sci. 172(1–2), 175–193 (1997)
-
Lekkerkerker, C., Boland, J.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51(1), 45–64 (1962)
-
Lilleeng, S.: A polynomial-time solvable case for the NP-hard problem cutwidth. Master's thesis, The University of Bergen (2014)
-
Lokshtanov, D., Misra, N., Saurabh, S.: Imbalance is fixed parameter tractable. Inf. Process. Lett. 113(19–21), 714–718 (2013)
-
Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings. Comput. Geom. 9(1–2), 83–110 (1998)
-
Stephane, F., Hammer, P.L.: Split graphs. In: Proceedings of the 8th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 311–315 (1977)
-
Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth I: a linear time fixed parameter algorithm. J. Algorithms 56(1), 1–24 (2005)
-
Thilikos, D.M., Serna, M., Bodlaender, H.L.: Cutwidth II: algorithms for partial w-trees of bounded degree. J. Algorithms 56(1), 25–49 (2005)
-
Wagner, G.: Eigenschaften der nerven homologische-einfactor familien in \(R^n\). Ph.D. thesis, Universität Gottigen (1967)
-
Wood, D.R.: Optimal three-dimensional orthogonal graph drawing in the general position model. Theoret. Comput. Sci. 299(1–3), 151–178 (2003)
-
Wood, D.R.: Minimising the number of bends and volume in 3-dimensional orthogonal graph drawings with a diagonal vertex layout. Algorithmica 39(3), 235–253 (2004)
-
Wood, D.R., Kratochvil, J., Kára, J.: On the complexity of the balanced vertex ordering problem. Discrete Math. Theor. Comput. Sci. 9 (2007)
-
Yannakakis, M.: A polynomial algorithm for the min-cut linear arrangement of trees. J. ACM (JACM) 32(4), 950–988 (1985)
Acknowledgements
The authors would like to thank Therese Biedl for helpful conversations on these results, as well as the anonymous reviewers for their suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Gorzny, J., Buss, J.F. (2019). Imbalance, Cutwidth, and the Structure of Optimal Orderings. In: Du, DZ., Duan, Z., Tian, C. (eds) Computing and Combinatorics. COCOON 2019. Lecture Notes in Computer Science(), vol 11653. Springer, Cham. https://doi.org/10.1007/978-3-030-26176-4_18
Download citation
- .RIS
- .ENW
- .BIB
-
DOI : https://doi.org/10.1007/978-3-030-26176-4_18
-
Published:
-
Publisher Name: Springer, Cham
-
Print ISBN: 978-3-030-26175-7
-
Online ISBN: 978-3-030-26176-4
-
eBook Packages: Computer Science Computer Science (R0)
Source: https://link.springer.com/chapter/10.1007/978-3-030-26176-4_18
0 Response to "Using Cutwidth and Then Geomcol for Continuous"
Post a Comment